mirror of
https://github.com/UofCBaja/BajaCloud.git
synced 2025-06-15 05:04:17 -06:00
fix(Packagers): changed to first time run
This commit is contained in:
parent
a9460dc692
commit
49313e8450
Binary file not shown.
85
ReadDB.py
85
ReadDB.py
@ -5,12 +5,10 @@ import time
|
||||
|
||||
from NoSheet import NoSheet
|
||||
import datetime
|
||||
import os
|
||||
|
||||
|
||||
"""
|
||||
TODO update to possibly not use pandas and update to use the new template
|
||||
TODO update name of function to be more clear
|
||||
TODO change to use new tempate
|
||||
TODO change names to be more clear
|
||||
"""
|
||||
|
||||
def ReadDatabase():
|
||||
@ -33,54 +31,51 @@ def ReadDatabase():
|
||||
excel_file_path = f"OR{year_donation}-L-Interview Data.xlsx"
|
||||
lock_file_path = f"OR{year_donation}-L-Interview Data.xlsx.lock"
|
||||
|
||||
if not (os.path.isfile(excel_file_path) or os.path.isfile(lock_file_path)):
|
||||
NoSheet()
|
||||
else:
|
||||
# Retry parameters
|
||||
max_retries = 60 # Maximum number of retries if the file is locked
|
||||
retry_interval = 0.5 # Wait time (in seconds) between retries
|
||||
# Retry parameters
|
||||
max_retries = 60 # Maximum number of retries if the file is locked
|
||||
retry_interval = 0.5 # Wait time (in seconds) between retries
|
||||
|
||||
retries = 0
|
||||
while retries < max_retries:
|
||||
try:
|
||||
# Attempt to acquire a shared read (non-blocking) access
|
||||
with FileLock(lock_file_path, timeout=0): # Non-blocking, checks if the lock exists
|
||||
# Load the Excel file into a pandas DataFrame
|
||||
df = pd.read_excel(excel_file_path)
|
||||
retries = 0
|
||||
while retries < max_retries:
|
||||
try:
|
||||
# Attempt to acquire a shared read (non-blocking) access
|
||||
with FileLock(lock_file_path, timeout=0): # Non-blocking, checks if the lock exists
|
||||
# Load the Excel file into a pandas DataFrame
|
||||
df = pd.read_excel(excel_file_path)
|
||||
|
||||
# Initialize the dictionary to store the structured data
|
||||
interview_data = {}
|
||||
# Initialize the dictionary to store the structured data
|
||||
interview_data = {}
|
||||
|
||||
# Group the DataFrame by Date, Start Time, and Slot for organization
|
||||
for _, row in df.iterrows():
|
||||
date = str(row['Date'])
|
||||
start_time = str(row['Start Time'])
|
||||
slot = int(row['Slot']) if not pd.isna(row['Slot']) else 0
|
||||
# Group the DataFrame by Date, Start Time, and Slot for organization
|
||||
for _, row in df.iterrows():
|
||||
date = str(row['Date'])
|
||||
start_time = str(row['Start Time'])
|
||||
slot = int(row['Slot']) if not pd.isna(row['Slot']) else 0
|
||||
|
||||
# Returns the number of interviewees in the slot; returns 0 if empty
|
||||
interviewee_amount = len(str(row['Interviewee Name']).split()) if str(row['Interviewee Name']) != "nan" else 0
|
||||
# Returns the number of interviewees in the slot; returns 0 if empty
|
||||
interviewee_amount = len(str(row['Interviewee Name']).split()) if str(row['Interviewee Name']) != "nan" else 0
|
||||
|
||||
# Check if the slot is available for an interviewee to attend
|
||||
available_slots = interviewee_amount != slot
|
||||
if available_slots:
|
||||
# Initialize nested structure if not present
|
||||
if date not in interview_data:
|
||||
interview_data[date] = {}
|
||||
# Add the start time and duration if not present
|
||||
if start_time not in interview_data[date]:
|
||||
interview_data[date][start_time] = {
|
||||
'Meeting Duration': row['Meeting Duration'],
|
||||
}
|
||||
return interview_data # Successfully read the database
|
||||
# Check if the slot is available for an interviewee to attend
|
||||
available_slots = interviewee_amount != slot
|
||||
if available_slots:
|
||||
# Initialize nested structure if not present
|
||||
if date not in interview_data:
|
||||
interview_data[date] = {}
|
||||
# Add the start time and duration if not present
|
||||
if start_time not in interview_data[date]:
|
||||
interview_data[date][start_time] = {
|
||||
'Meeting Duration': row['Meeting Duration'],
|
||||
}
|
||||
return interview_data # Successfully read the database
|
||||
|
||||
except Timeout:
|
||||
# File is locked; wait and retry
|
||||
retries += 1
|
||||
print(f"File is locked, retrying ({retries}/{max_retries})...")
|
||||
time.sleep(retry_interval)
|
||||
except Timeout:
|
||||
# File is locked; wait and retry
|
||||
retries += 1
|
||||
print(f"File is locked, retrying ({retries}/{max_retries})...")
|
||||
time.sleep(retry_interval)
|
||||
|
||||
# If max retries are exceeded, raise an error
|
||||
raise RuntimeError("Unable to access the database after multiple attempts due to a file lock.")
|
||||
# If max retries are exceeded, raise an error
|
||||
raise RuntimeError("Unable to access the database after multiple attempts due to a file lock.")
|
||||
|
||||
# Example usage of the ReadDatabase function
|
||||
if __name__ == "__main__":
|
||||
|
127
WriteDB.py
127
WriteDB.py
@ -4,15 +4,13 @@ from openpyxl import load_workbook
|
||||
from send_email import send_email
|
||||
from filelock import FileLock
|
||||
|
||||
from NoSheet import NoSheet
|
||||
import datetime
|
||||
import os
|
||||
|
||||
"""
|
||||
TODO update to possibly not use pandas and update to use the new template
|
||||
TODO update name of functions to be more clear
|
||||
TODO make it work with the new template
|
||||
TODO update names to be more clear
|
||||
TODO try to remove pandas
|
||||
"""
|
||||
|
||||
def ReadDatabase():
|
||||
"""
|
||||
Reads the Database to retrieve available interview slots
|
||||
@ -30,41 +28,37 @@ def ReadDatabase():
|
||||
# name based off the 2025 naming system
|
||||
file_path = f"OR{year_donation}-L-Interview Data.xlsx"
|
||||
lock_path = f"OR{year_donation}-L-Interview Data.xlsx.lock"
|
||||
|
||||
# Use a file-based lock for thread-safe and process-safe access
|
||||
with FileLock(lock_path):
|
||||
# Load the Excel file into a pandas DataFrame with specific columns
|
||||
df = pd.read_excel(file_path, usecols=['Date', 'Start Time', 'Slot', 'Interviewee Name', 'Interviewee Email', 'Meeting Duration'])
|
||||
|
||||
# checks for if the file exisits for the year otherwise it will create one
|
||||
if not (os.path.isfile(file_path) or os.path.isfile(lock_path)):
|
||||
NoSheet()
|
||||
else:
|
||||
# Use a file-based lock for thread-safe and process-safe access
|
||||
with FileLock(lock_path):
|
||||
# Load the Excel file into a pandas DataFrame with specific columns
|
||||
df = pd.read_excel(file_path, usecols=['Date', 'Start Time', 'Slot', 'Interviewee Name', 'Interviewee Email', 'Meeting Duration'])
|
||||
|
||||
# Initialize the dictionary to store structured data for available slots
|
||||
# Initialize the dictionary to store structured data for available slots
|
||||
interview_data = {}
|
||||
|
||||
# Process each row in the DataFrame to structure data by date and time
|
||||
for _, row in df.iterrows():
|
||||
# Convert Date and Start Time to string format for easier comparison
|
||||
date = str(row['Date']).split(" ")[0] # Format date to YYYY-MM-DD
|
||||
start_time = str(row['Start Time'])
|
||||
# Process each row in the DataFrame to structure data by date and time
|
||||
for _, row in df.iterrows():
|
||||
# Convert Date and Start Time to string format for easier comparison
|
||||
date = str(row['Date']).split(" ")[0] # Format date to YYYY-MM-DD
|
||||
start_time = str(row['Start Time'])
|
||||
|
||||
# Calculate the slot capacity and current number of interviewees
|
||||
slot_capacity = int(row['Slot']) if not pd.isna(row['Slot']) else 0
|
||||
interviewee_names = [name.strip() for name in str(row['Interviewee Name']).split(',') if name.strip()]
|
||||
interviewee_count = len(interviewee_names) if interviewee_names != ["nan"] else 0
|
||||
# Calculate the slot capacity and current number of interviewees
|
||||
slot_capacity = int(row['Slot']) if not pd.isna(row['Slot']) else 0
|
||||
interviewee_names = [name.strip() for name in str(row['Interviewee Name']).split(',') if name.strip()]
|
||||
interviewee_count = len(interviewee_names) if interviewee_names != ["nan"] else 0
|
||||
|
||||
# Check if there are available slots for more interviewees
|
||||
if interviewee_count < slot_capacity:
|
||||
# Organize data by date and time, keeping track of available slots and meeting duration
|
||||
if date not in interview_data:
|
||||
interview_data[date] = {}
|
||||
interview_data[date][start_time] = {
|
||||
'Meeting Duration': row['Meeting Duration'],
|
||||
'Available Slots': slot_capacity - interviewee_count
|
||||
}
|
||||
# Check if there are available slots for more interviewees
|
||||
if interviewee_count < slot_capacity:
|
||||
# Organize data by date and time, keeping track of available slots and meeting duration
|
||||
if date not in interview_data:
|
||||
interview_data[date] = {}
|
||||
interview_data[date][start_time] = {
|
||||
'Meeting Duration': row['Meeting Duration'],
|
||||
'Available Slots': slot_capacity - interviewee_count
|
||||
}
|
||||
|
||||
return interview_data
|
||||
return interview_data
|
||||
|
||||
def AppendAppointment(date, start_time, interviewee_name, interviewee_email):
|
||||
"""
|
||||
@ -84,46 +78,41 @@ def AppendAppointment(date, start_time, interviewee_name, interviewee_email):
|
||||
file_path = f"OR{year_donation}-L-Interview Data.xlsx"
|
||||
lock_path = f"OR{year_donation}-L-Interview Data.xlsx.lock"
|
||||
|
||||
# checks for if the file exisits for the year otherwise it will create one
|
||||
if not (os.path.isfile(file_path) or os.path.isfile(lock_path)):
|
||||
NoSheet()
|
||||
else:
|
||||
available_slots = ReadDatabase()
|
||||
|
||||
# Check if the requested slot is available in the `available_slots` structure
|
||||
if date in available_slots and start_time in available_slots[date]:
|
||||
with FileLock(lock_path): # Ensure process-safe access to the file
|
||||
# Load workbook and select "Sheet1" for updating appointments
|
||||
workbook = load_workbook(file_path)
|
||||
sheet = workbook["Interview Timetable"]
|
||||
df = pd.read_excel(file_path)
|
||||
|
||||
available_slots = ReadDatabase()
|
||||
|
||||
# Check if the requested slot is available in the `available_slots` structure
|
||||
if date in available_slots and start_time in available_slots[date]:
|
||||
with FileLock(lock_path): # Ensure process-safe access to the file
|
||||
# Load workbook and select "Sheet1" for updating appointments
|
||||
workbook = load_workbook(file_path)
|
||||
sheet = workbook["Interview Timetable"]
|
||||
df = pd.read_excel(file_path)
|
||||
# Find and update the row that matches the provided date and start time
|
||||
for index, row in df.iterrows():
|
||||
row_date = str(row['Date']).split(" ")[0]
|
||||
row_start_time = str(row['Start Time'])
|
||||
|
||||
# Find and update the row that matches the provided date and start time
|
||||
for index, row in df.iterrows():
|
||||
row_date = str(row['Date']).split(" ")[0]
|
||||
row_start_time = str(row['Start Time'])
|
||||
if row_date == date and row_start_time == start_time:
|
||||
# Current entries for names and emails, and append new data with comma and space
|
||||
current_names = str(row['Interviewee Name']).strip()
|
||||
current_emails = str(row['Interviewee Email']).strip()
|
||||
|
||||
updated_names = f"{current_names}, {interviewee_name}" if current_names != "nan" else interviewee_name
|
||||
updated_emails = f"{current_emails}, {interviewee_email}" if current_emails != "nan" else interviewee_email
|
||||
|
||||
if row_date == date and row_start_time == start_time:
|
||||
# Current entries for names and emails, and append new data with comma and space
|
||||
current_names = str(row['Interviewee Name']).strip()
|
||||
current_emails = str(row['Interviewee Email']).strip()
|
||||
|
||||
updated_names = f"{current_names}, {interviewee_name}" if current_names != "nan" else interviewee_name
|
||||
updated_emails = f"{current_emails}, {interviewee_email}" if current_emails != "nan" else interviewee_email
|
||||
# Update the cells with new names and emails
|
||||
name_cell = sheet.cell(row=index + 2, column=df.columns.get_loc('Interviewee Name') + 1)
|
||||
email_cell = sheet.cell(row=index + 2, column=df.columns.get_loc('Interviewee Email') + 1)
|
||||
name_cell.value = updated_names
|
||||
email_cell.value = updated_emails
|
||||
|
||||
# Update the cells with new names and emails
|
||||
name_cell = sheet.cell(row=index + 2, column=df.columns.get_loc('Interviewee Name') + 1)
|
||||
email_cell = sheet.cell(row=index + 2, column=df.columns.get_loc('Interviewee Email') + 1)
|
||||
name_cell.value = updated_names
|
||||
email_cell.value = updated_emails
|
||||
workbook.save(file_path)
|
||||
send_email(interviewee_email, interviewee_name, date, start_time)
|
||||
return True
|
||||
|
||||
workbook.save(file_path)
|
||||
send_email(interviewee_email, interviewee_name, date, start_time)
|
||||
return True
|
||||
|
||||
# If no slots available, return that the slot is unavailable
|
||||
return False
|
||||
# If no slots available, return that the slot is unavailable
|
||||
return False
|
||||
|
||||
|
||||
def run_tests():
|
||||
|
Binary file not shown.
Binary file not shown.
BIN
__pycache__/interviewPackagers.cpython-313.pyc
Normal file
BIN
__pycache__/interviewPackagers.cpython-313.pyc
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,62 @@
|
||||
from ReadDB import ReadDatabase
|
||||
|
||||
|
||||
def getSchedulePackager():
|
||||
"""
|
||||
Packages up the response for a http response
|
||||
|
||||
``REQUIRES``: None
|
||||
|
||||
``PROMISES``: ``JSON`` http response ready
|
||||
|
||||
``Develop in part by``: Brock T
|
||||
|
||||
``Contact``: darkicewolf50@gmail.ocm
|
||||
|
||||
"""
|
||||
return {
|
||||
"interviewDates": ReadDatabase()
|
||||
}
|
||||
|
||||
from WriteDB import AppendAppointment
|
||||
from email_validator import validate_email, EmailNotValidError
|
||||
|
||||
|
||||
def SelectAppointment (appointmentJson):
|
||||
"""
|
||||
Packages up a response for a http request
|
||||
|
||||
``REQUIRES``: ``JSON`` with the data of interviewee name, date, starttime and interviewee email
|
||||
|
||||
``PROMISES``: ``JSON`` Returns if the booking was a success
|
||||
|
||||
``Developed in part by``: Brock
|
||||
|
||||
``Contact``: darkicewolf50@gmail.com
|
||||
|
||||
"""
|
||||
"""
|
||||
Example of an incoming http post body
|
||||
{
|
||||
"intervieweeName": "Brock",
|
||||
"date": "2024-09-16",
|
||||
"startTime": "10:30:00",
|
||||
"intervieweeEmail": "darkicewolf50@gmail.com"
|
||||
}
|
||||
"""
|
||||
try:
|
||||
validEmail = validate_email(appointmentJson["intervieweeEmail"], check_deliverability=True)
|
||||
if validEmail:
|
||||
status = AppendAppointment(date=appointmentJson["date"], start_time=appointmentJson["startTime"], interviewee_name=appointmentJson["intervieweeName"], interviewee_email=appointmentJson["intervieweeEmail"])
|
||||
|
||||
if status:
|
||||
resBody = {"Success": True, "validEmail": "true"}
|
||||
else:
|
||||
resBody = {"Success": False, "validEmail": "true"}
|
||||
|
||||
# resBody["message"] = appointmentJson for testing
|
||||
return resBody
|
||||
|
||||
except EmailNotValidError as e:
|
||||
return {"Success": False, "validEmail": "false"}
|
||||
|
12
main.py
12
main.py
@ -1,8 +1,18 @@
|
||||
import json
|
||||
from fastapi import FastAPI
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
from NoSheet import NoSheet
|
||||
import datetime
|
||||
import os
|
||||
|
||||
year_donation = int(str(datetime.datetime.now().year)[2:]) + 1 # gets the last two digits of the current year then adds 1 for the current season
|
||||
# name based off the 2025 naming system
|
||||
# Define the path to the Excel file and the lock file
|
||||
file_name = f"OR{year_donation}-L-Interview Data.xlsx"
|
||||
if not os.path.isfile(file_name):
|
||||
NoSheet()
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
@app.get("/")
|
||||
|
Loading…
x
Reference in New Issue
Block a user