fix(Packagers): changed to first time run

This commit is contained in:
darkicewolf50 2024-12-07 20:07:57 -07:00
parent a9460dc692
commit 49313e8450
10 changed files with 171 additions and 115 deletions

Binary file not shown.

View File

@ -5,12 +5,10 @@ import time
from NoSheet import NoSheet
import datetime
import os
"""
TODO update to possibly not use pandas and update to use the new template
TODO update name of function to be more clear
TODO change to use new tempate
TODO change names to be more clear
"""
def ReadDatabase():
@ -33,54 +31,51 @@ def ReadDatabase():
excel_file_path = f"OR{year_donation}-L-Interview Data.xlsx"
lock_file_path = f"OR{year_donation}-L-Interview Data.xlsx.lock"
if not (os.path.isfile(excel_file_path) or os.path.isfile(lock_file_path)):
NoSheet()
else:
# Retry parameters
max_retries = 60 # Maximum number of retries if the file is locked
retry_interval = 0.5 # Wait time (in seconds) between retries
# Retry parameters
max_retries = 60 # Maximum number of retries if the file is locked
retry_interval = 0.5 # Wait time (in seconds) between retries
retries = 0
while retries < max_retries:
try:
# Attempt to acquire a shared read (non-blocking) access
with FileLock(lock_file_path, timeout=0): # Non-blocking, checks if the lock exists
# Load the Excel file into a pandas DataFrame
df = pd.read_excel(excel_file_path)
retries = 0
while retries < max_retries:
try:
# Attempt to acquire a shared read (non-blocking) access
with FileLock(lock_file_path, timeout=0): # Non-blocking, checks if the lock exists
# Load the Excel file into a pandas DataFrame
df = pd.read_excel(excel_file_path)
# Initialize the dictionary to store the structured data
interview_data = {}
# Initialize the dictionary to store the structured data
interview_data = {}
# Group the DataFrame by Date, Start Time, and Slot for organization
for _, row in df.iterrows():
date = str(row['Date'])
start_time = str(row['Start Time'])
slot = int(row['Slot']) if not pd.isna(row['Slot']) else 0
# Group the DataFrame by Date, Start Time, and Slot for organization
for _, row in df.iterrows():
date = str(row['Date'])
start_time = str(row['Start Time'])
slot = int(row['Slot']) if not pd.isna(row['Slot']) else 0
# Returns the number of interviewees in the slot; returns 0 if empty
interviewee_amount = len(str(row['Interviewee Name']).split()) if str(row['Interviewee Name']) != "nan" else 0
# Returns the number of interviewees in the slot; returns 0 if empty
interviewee_amount = len(str(row['Interviewee Name']).split()) if str(row['Interviewee Name']) != "nan" else 0
# Check if the slot is available for an interviewee to attend
available_slots = interviewee_amount != slot
if available_slots:
# Initialize nested structure if not present
if date not in interview_data:
interview_data[date] = {}
# Add the start time and duration if not present
if start_time not in interview_data[date]:
interview_data[date][start_time] = {
'Meeting Duration': row['Meeting Duration'],
}
return interview_data # Successfully read the database
# Check if the slot is available for an interviewee to attend
available_slots = interviewee_amount != slot
if available_slots:
# Initialize nested structure if not present
if date not in interview_data:
interview_data[date] = {}
# Add the start time and duration if not present
if start_time not in interview_data[date]:
interview_data[date][start_time] = {
'Meeting Duration': row['Meeting Duration'],
}
return interview_data # Successfully read the database
except Timeout:
# File is locked; wait and retry
retries += 1
print(f"File is locked, retrying ({retries}/{max_retries})...")
time.sleep(retry_interval)
except Timeout:
# File is locked; wait and retry
retries += 1
print(f"File is locked, retrying ({retries}/{max_retries})...")
time.sleep(retry_interval)
# If max retries are exceeded, raise an error
raise RuntimeError("Unable to access the database after multiple attempts due to a file lock.")
# If max retries are exceeded, raise an error
raise RuntimeError("Unable to access the database after multiple attempts due to a file lock.")
# Example usage of the ReadDatabase function
if __name__ == "__main__":

View File

@ -4,15 +4,13 @@ from openpyxl import load_workbook
from send_email import send_email
from filelock import FileLock
from NoSheet import NoSheet
import datetime
import os
"""
TODO update to possibly not use pandas and update to use the new template
TODO update name of functions to be more clear
TODO make it work with the new template
TODO update names to be more clear
TODO try to remove pandas
"""
def ReadDatabase():
"""
Reads the Database to retrieve available interview slots
@ -30,41 +28,37 @@ def ReadDatabase():
# name based off the 2025 naming system
file_path = f"OR{year_donation}-L-Interview Data.xlsx"
lock_path = f"OR{year_donation}-L-Interview Data.xlsx.lock"
# Use a file-based lock for thread-safe and process-safe access
with FileLock(lock_path):
# Load the Excel file into a pandas DataFrame with specific columns
df = pd.read_excel(file_path, usecols=['Date', 'Start Time', 'Slot', 'Interviewee Name', 'Interviewee Email', 'Meeting Duration'])
# checks for if the file exisits for the year otherwise it will create one
if not (os.path.isfile(file_path) or os.path.isfile(lock_path)):
NoSheet()
else:
# Use a file-based lock for thread-safe and process-safe access
with FileLock(lock_path):
# Load the Excel file into a pandas DataFrame with specific columns
df = pd.read_excel(file_path, usecols=['Date', 'Start Time', 'Slot', 'Interviewee Name', 'Interviewee Email', 'Meeting Duration'])
# Initialize the dictionary to store structured data for available slots
# Initialize the dictionary to store structured data for available slots
interview_data = {}
# Process each row in the DataFrame to structure data by date and time
for _, row in df.iterrows():
# Convert Date and Start Time to string format for easier comparison
date = str(row['Date']).split(" ")[0] # Format date to YYYY-MM-DD
start_time = str(row['Start Time'])
# Process each row in the DataFrame to structure data by date and time
for _, row in df.iterrows():
# Convert Date and Start Time to string format for easier comparison
date = str(row['Date']).split(" ")[0] # Format date to YYYY-MM-DD
start_time = str(row['Start Time'])
# Calculate the slot capacity and current number of interviewees
slot_capacity = int(row['Slot']) if not pd.isna(row['Slot']) else 0
interviewee_names = [name.strip() for name in str(row['Interviewee Name']).split(',') if name.strip()]
interviewee_count = len(interviewee_names) if interviewee_names != ["nan"] else 0
# Calculate the slot capacity and current number of interviewees
slot_capacity = int(row['Slot']) if not pd.isna(row['Slot']) else 0
interviewee_names = [name.strip() for name in str(row['Interviewee Name']).split(',') if name.strip()]
interviewee_count = len(interviewee_names) if interviewee_names != ["nan"] else 0
# Check if there are available slots for more interviewees
if interviewee_count < slot_capacity:
# Organize data by date and time, keeping track of available slots and meeting duration
if date not in interview_data:
interview_data[date] = {}
interview_data[date][start_time] = {
'Meeting Duration': row['Meeting Duration'],
'Available Slots': slot_capacity - interviewee_count
}
# Check if there are available slots for more interviewees
if interviewee_count < slot_capacity:
# Organize data by date and time, keeping track of available slots and meeting duration
if date not in interview_data:
interview_data[date] = {}
interview_data[date][start_time] = {
'Meeting Duration': row['Meeting Duration'],
'Available Slots': slot_capacity - interviewee_count
}
return interview_data
return interview_data
def AppendAppointment(date, start_time, interviewee_name, interviewee_email):
"""
@ -84,46 +78,41 @@ def AppendAppointment(date, start_time, interviewee_name, interviewee_email):
file_path = f"OR{year_donation}-L-Interview Data.xlsx"
lock_path = f"OR{year_donation}-L-Interview Data.xlsx.lock"
# checks for if the file exisits for the year otherwise it will create one
if not (os.path.isfile(file_path) or os.path.isfile(lock_path)):
NoSheet()
else:
available_slots = ReadDatabase()
# Check if the requested slot is available in the `available_slots` structure
if date in available_slots and start_time in available_slots[date]:
with FileLock(lock_path): # Ensure process-safe access to the file
# Load workbook and select "Sheet1" for updating appointments
workbook = load_workbook(file_path)
sheet = workbook["Interview Timetable"]
df = pd.read_excel(file_path)
available_slots = ReadDatabase()
# Check if the requested slot is available in the `available_slots` structure
if date in available_slots and start_time in available_slots[date]:
with FileLock(lock_path): # Ensure process-safe access to the file
# Load workbook and select "Sheet1" for updating appointments
workbook = load_workbook(file_path)
sheet = workbook["Interview Timetable"]
df = pd.read_excel(file_path)
# Find and update the row that matches the provided date and start time
for index, row in df.iterrows():
row_date = str(row['Date']).split(" ")[0]
row_start_time = str(row['Start Time'])
# Find and update the row that matches the provided date and start time
for index, row in df.iterrows():
row_date = str(row['Date']).split(" ")[0]
row_start_time = str(row['Start Time'])
if row_date == date and row_start_time == start_time:
# Current entries for names and emails, and append new data with comma and space
current_names = str(row['Interviewee Name']).strip()
current_emails = str(row['Interviewee Email']).strip()
updated_names = f"{current_names}, {interviewee_name}" if current_names != "nan" else interviewee_name
updated_emails = f"{current_emails}, {interviewee_email}" if current_emails != "nan" else interviewee_email
if row_date == date and row_start_time == start_time:
# Current entries for names and emails, and append new data with comma and space
current_names = str(row['Interviewee Name']).strip()
current_emails = str(row['Interviewee Email']).strip()
updated_names = f"{current_names}, {interviewee_name}" if current_names != "nan" else interviewee_name
updated_emails = f"{current_emails}, {interviewee_email}" if current_emails != "nan" else interviewee_email
# Update the cells with new names and emails
name_cell = sheet.cell(row=index + 2, column=df.columns.get_loc('Interviewee Name') + 1)
email_cell = sheet.cell(row=index + 2, column=df.columns.get_loc('Interviewee Email') + 1)
name_cell.value = updated_names
email_cell.value = updated_emails
# Update the cells with new names and emails
name_cell = sheet.cell(row=index + 2, column=df.columns.get_loc('Interviewee Name') + 1)
email_cell = sheet.cell(row=index + 2, column=df.columns.get_loc('Interviewee Email') + 1)
name_cell.value = updated_names
email_cell.value = updated_emails
workbook.save(file_path)
send_email(interviewee_email, interviewee_name, date, start_time)
return True
workbook.save(file_path)
send_email(interviewee_email, interviewee_name, date, start_time)
return True
# If no slots available, return that the slot is unavailable
return False
# If no slots available, return that the slot is unavailable
return False
def run_tests():

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,62 @@
from ReadDB import ReadDatabase
def getSchedulePackager():
"""
Packages up the response for a http response
``REQUIRES``: None
``PROMISES``: ``JSON`` http response ready
``Develop in part by``: Brock T
``Contact``: darkicewolf50@gmail.ocm
"""
return {
"interviewDates": ReadDatabase()
}
from WriteDB import AppendAppointment
from email_validator import validate_email, EmailNotValidError
def SelectAppointment (appointmentJson):
"""
Packages up a response for a http request
``REQUIRES``: ``JSON`` with the data of interviewee name, date, starttime and interviewee email
``PROMISES``: ``JSON`` Returns if the booking was a success
``Developed in part by``: Brock
``Contact``: darkicewolf50@gmail.com
"""
"""
Example of an incoming http post body
{
"intervieweeName": "Brock",
"date": "2024-09-16",
"startTime": "10:30:00",
"intervieweeEmail": "darkicewolf50@gmail.com"
}
"""
try:
validEmail = validate_email(appointmentJson["intervieweeEmail"], check_deliverability=True)
if validEmail:
status = AppendAppointment(date=appointmentJson["date"], start_time=appointmentJson["startTime"], interviewee_name=appointmentJson["intervieweeName"], interviewee_email=appointmentJson["intervieweeEmail"])
if status:
resBody = {"Success": True, "validEmail": "true"}
else:
resBody = {"Success": False, "validEmail": "true"}
# resBody["message"] = appointmentJson for testing
return resBody
except EmailNotValidError as e:
return {"Success": False, "validEmail": "false"}

12
main.py
View File

@ -1,8 +1,18 @@
import json
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from NoSheet import NoSheet
import datetime
import os
year_donation = int(str(datetime.datetime.now().year)[2:]) + 1 # gets the last two digits of the current year then adds 1 for the current season
# name based off the 2025 naming system
# Define the path to the Excel file and the lock file
file_name = f"OR{year_donation}-L-Interview Data.xlsx"
if not os.path.isfile(file_name):
NoSheet()
app = FastAPI()
@app.get("/")