import pandas as pd import yaml # Load the YAML file with open("./interview_database.yaml", 'r') as file: interview_data = yaml.safe_load(file) # Access the nested structure within 'Data' flattened_data = [] for date, date_info in interview_data['Data'].items(): meeting_duration = date_info.get('Meeting Duration') for start_time_info in date_info.get('Meeting Start Times', []): for start_time, meeting_info in start_time_info.items(): interviewer_name = meeting_info['Interviewer'][0].get('Name') interviewer_email = meeting_info['Interviewer'][1].get('Email') interviewee_name = meeting_info['Interviewee'][0].get('Name') interviewee_email = meeting_info['Interviewee'][1].get('Email') category = meeting_info.get('Category') status = meeting_info.get('Status') slot = meeting_info.get('Slot') # Add flattened row to list flattened_data.append({ 'Date': date, 'Meeting Duration': meeting_duration, 'Start Time': start_time, 'Interviewer Name': interviewer_name, 'Interviewer Email': interviewer_email, 'Interviewee Name': interviewee_name, 'Interviewee Email': interviewee_email, 'Category': category, 'Status': status, 'Slot': slot }) # Convert to DataFrame if flattened data is not empty if flattened_data: df = pd.DataFrame(flattened_data) # Write the DataFrame to an Excel file df.to_excel("interview_database.xlsx", index=False) print("Data has been written to interview_database.xlsx") else: print("No data found to write.")